
N90-25536

A comparison of two neural network schemes for

navigation.

Paul Munro

Department of Information Science

University of Pittsburgh

Pittsburgh PA 15260

munro@k:lis.lis.pitlsburgh.edu

Abstract. Neural networks have been applied to tasks in

several areas of artificial intelligence, including vision,

speech, and language. Relatively little work has been done

in the area of problem solving. Two approaches to

path-finding are presented, both using neural network

techniques. Both techniques require a training period.

Training under the back propagation (BPL) method was

accomplished by presenting representations of [current

position, goal position] pairs as input and appropriate

actions as output. The Hebbian/interactive activation

(HIA) method uses the Hcbbian rule to associate points

that are nearby. A path to a goal is found by activating a

representation of the goal in the network and processing

until the current position is activated above some threshold

level. BPL, using back-propagation learning, failed to

learn, except in a very trivial fashion, that is equivalent to

table lookup techniques. HIA, performed much better,

and required storage of fewer weights. In drawing a

comparison, it is important to note that back propagation

techniques depend critically upon the forms of

representation used, and can be sensitive to parameters in

the simulations; hence the BPL technique may yet yield

strong results.

Introduction

Description of the problem.

A map is given, which is a represention of landmarks and

allowed paths and/or obstacles in the relevant region of

space. Given an arbitrary pair of points, I (initial) and G

(goal), the problem is to compute a sequence of actions

which will bring the subject from I to G. Several

approaches to this classic problem have been put forward

(see for example, Brooks, 1983). These tend to rely upon

explicit geometrical computations on polygonal

representations of obstacles. In contrast, any geometrical

considerations in the neural network approaches described

below axe implicit, that is, they are emergent artifacts of the

learning processes. Two principles for processing and

training of neural networks are briefly described in this

section. More detailed treatments can be found in the

references.

Back-propagation learning

Back propagation (Rumelhart, Hinton, & Williams, 1986)

is a general algorithmic framework for training a

feed-forward network of semi-linear units by randomly

selecting pairs of input-output patterns from a training set

and incrementally adjusting the network parameters, such

that the network produces the appropriate output for a

given input. The parameters of the network are usually,

but not necessarily, restricted to the weights on the links

(edges, in graph theoretic terminology) between the units

(nodes). Initially, the parameters are set to random values.

With each presentation of an input-output pair, the network

produces a response to the input, which is compared to the

desired output; the back-propagation learning (BPL)

algorithm specifies a method for adjusting the network

parameters, such that the discrepancy between the

response and the desired output is reduced. The procedure

is based on a gradient descent of the parmeter vector across

an error measure. Like other gradient descent techniques,

BPL is not guaranteed to find the global minimum; instead,

305

PRECEDING PAGE BLANK NOT FILMED



it often gets stuck in lo_al minima, which may nevertheless

result in acceptable performance by the network. As

originally conceived, BPL was limited to static patterns,

however there has been recent progress in processing

time-varying inputs. (e.g. Jordan, 1987; Elman, I988).

Hebbianllnteracive Activation

goal states are represented as patterns of activation across

sets of input units. Each of the input units is connected to

each of the "hidden" units (hidden, because they do not

interact with the environment external to the network) in

the next layer. Each of the hidden units is connected to

each of the output units. The connection matrices are

symbolized by the bold arrows in Figure 1.

An interactive activation network (McClelland &

Rumclhart, 1981) consists of a population of "neuron-like"

elements, each representing an identifiable concept, in

most implementations. The nodes are connected with

positive weights, if their concepts are positively

associated, and with negative weights if they are negatively

associated. Normally, the weights are "hard-wired"; that

is, the weights are preset and do not modify. However

Hebb's postulate (1949) can be realized as a differential

equation for learning in such networks, as has been done

in other models, such as the Brain State in the Box (BSB)

model of Anderson (1977).

A BPL approach to navigation:

Method and results

The back propagation algorithm is typically applied to

categorization problems, by learning an input-output

mapping, where the inputs are exemplars and the outputs

are categories. Jordan (1987) showed how a network

could be trained to learn sequences, by partitioning the

input into a represention labelling the sequence and a

representation of one element of the:sequence, and the

output as a representation of the successor element in the

sequence. Below, a similar scheme is applied to the

navigation problem. The input is partitioned into a

representation of the current state and a representation of

the desired (goal) state. The output drives some sort of

effector which changes the current state. The network

architecture is shown in Figure 1. The current state and

i

Action
Units IG @ @ G 1

I
HIDDEN UNITS _

!o.oooloooOQO00 000
OO000 OO0
00000 000

Current location Goal location

Figure 1. Basic route-findingnetwork. Inputunits
specify currentandgoal locations. Thenetwock
generatesanappropriateactionasthe output. The
currentlocation is updatedaccordingto the interaction
of the action with the physicsof theenvironment.

Attempts were made to train such a network on a very

simple environment, consisting of a 5 by 5 grid of cells,

each accessable by a single step from its 4 (N, E, $, and

W) neighbors. With a small set of training data, the

network was able to learn the steps in that set perfectly.

However, if the set became too large, performance would

306



suffer. The performance of the network (with the addition

of a second layer of hidden units) is shown in Figure 2.

For each of the 25 possible goals, a five by five matrix of

arrows depicts the motion taken by the network. A circle

indicates where the position is identical to the goal; thus for

each matrix the circle is the target. Note that while the

trend is generally correct, the network makes errors that

lead to dead ends (edges) or limitless oscillations (for

example, when two arrows point toward each other).

0^<< ^ <0<< ^ <^0> ^ >^>0 ^ >>>>0

><<<< >^<<< >>^<< >>>^^ >>>>^

^^<<< ^^^<< >^^^< >>^^^ >>>^^

^^^<< ^^^^< ..... >^^^^ >>^^^

^^^^^ ^^^^^ ^^^^^ >^^^^ >>^^^

<<<<< <<<<^ V^V< ^ >>>>^ >>>>^

0<<<< >0<<< >>0<< >>>0 ^ >>>>0

^<<<< >^<<< >>^<< >>>^< >>>><

^^<<< ^^^<< >^^^< >>^^^ >>>^^

<^^<< ..... >^^^^ >>^^^ >>^^>

<<<<< V<VV< V>VV ^ V>VV ^ >>>>^

<<<<< VV<<< >>V<< >>>V< >>>>>

0<<<< >0<<< >>0<< >>>0< >>>>0

<<<<< ^^<<< >>^<< >>>^^ >>>>^

<<<<< V^^< ^ V>^^^ >>^^^ >>^^>

V<<V< VVVV< VVVV< V>VVV V>VV>

VV<<< VVV<< >VVV< >>VVV >>>VV

V<<<< >V<<< >>V<< >>>V< >>>>V

0<<<< >0<<< >>0<< >>>0< >>>>0

<<<<< V<<<< >>^^> V>^V> >>>V>

WVV< VVVV< VVVVV VVVVV V>VVV

VVV<< VVVV< VVVVV >VVVV >>VVV

VV<<< VVV<< >VVV< >>VVV >>>VV

<<<<< VV<<< >>V<< >>>V< >>>>V

0<<<< vO<<v v>O>v >>>0> V>>VO

Figure 2. The results from a fully connected BPL
network. See text for description.

It was generally found that learning was much better when

the patterns were presented to the network independently

of the previous pattern. In the initial investigations, a

particular goal was held constant while the network was

trained on a sequence of steps leading to the goal, after

which the goal was shifted to a random location.

However, under such a training schedule, the goal position

can remain constant too long, such that the weights from

the current position representation "forget" what they

learned with respect to other goals.

Action

Units (@ Q @ Q/

I
SECOND HIDDEN L_YER )

00000 :irst Hidder

00000 Layer
00000 Structured

00000

ollO00

IIIIII00
QIIO00
00000

Current location

00000
00000
00000
00000

t
000001

00000
000@@
000@@

Goallocation

Figure 3. In this network, two sets of units
have been inserted between the input layer and the

hidden unit layer. One has a set of one-to-one
connections with the GOAL input units and is

fully connected to the CURRENT input units,
and the other is connected in a complementary

fashion. This "slructured" hidden layer facilitates
learning, but leads to poor generalization.

To remedy this, a more complex architecture was

introduced (see Figure 3), by inserting another layer of

hidden units into the previous structure between the input

layer and the hidden layer. This new hidden layer consists

of two sets of units. One set has one unit corresponding to

each unit in the goal location input layer and receives input

from that unit alone among the goal location input units; all

of the units in that set receive input from all units in the

307



current location input set. That is, that set in the first

hidden layer receives one-to-one connections (thin arrow)

from the goal location input set and is fully connected to

the current location input set (thick arrow). The other

hidden set has a complementary set of connections. The

one-to-one connections were gates, or multiplicative

connections; that is, unless input was received from one of

these connections the hidden unit did not respond.

With this architecture, the network was able to learn the 5

by 5 environment perfectly, as shown in Figure 4.

However, in this case learning is quite brittle. The

network is now nothing more than a lookup table, since it

has specific weights corresponding to every input

combination. Thus, there is no generalization of

information from one learning trial to any other situation.

0<<<< >0<<< >>0<< >_>0< >>>>0

^<<<< >^<<< >>^<< >>>^< >>>>^

^^<<< ^^^<< >^^^< >>^^^ >>>^^

^^^<< ^^^^< .... ^ >A^^^ >>^^^

^^^^< ^^^^A ^^^^^ ^AAAA >^^^^

v<<<< >v<<< >>v<< >>>v< >>>>v

0<<<< >0<<< >>0<< >>>0< >>>>0

^<<<< >^<<< >>^<< >>>^< >>>>^

_^<<< ^^^<< >^^^< >>^^^ >>>^^

^^^<< ^^^^< ^^^^^ > .... >>^^^

vv<<< vvv<< >wv< >>vvv >>>vv

v<<<< >v<<< >>v<< >>>v< >>>>v

0<<<< >0<<< >>0<< >>>0< >>>>0

^<<<< >^<<< >>^<< >>>^< >>>>_

A^<<< ^^^<< >^^^< >>^^^ >>>^^

VVV<< VVVV< VVVVV >VVVV >>VVV

VV<<< VW<< >VVV< >>VVV >>>W

V<<<< >V<<< >>V<< >>>V< >>>>V

0<<<< >0<<< >>0<< >>>0< >>>>0

^<<<< >^<<< >>^<< >>>^< >>>>^

WVV< WVW VVVVV VVVVV >VVVV

VVV<< VVVV< VVVVV >VVW >>VVV

VV<<< VVV<< >VVV< >>VVV >>>VV

V<<<< >V<<< >>V<< >>>V< >>>>V

o<<<< >o<<< >>o<< >>>o< >>>>o

Figure 4. The results from a partially connected BPL
network. See text for description.

A Hebbian/Interactive activation approach

to navigation:

Method and results

In this network, the environment was represented similarly

to the above input representation, in that there is a unit for

every landmark in the environment. Again, in

consideration of designing the computer simulation, a

rectangular grid was used. However, the architecture was

quite different. In this network, all units were connected

(initially) to all other units. Simulations using this model

were performed in more complex environments; here, not

every grid element was connected to its four neighbors.

Instead environments, such as that shown in Figure 5,

were used.

X-- X-- X X-- X-- X

{ { { {
X X--X X X--X

I { } } i
X-- X X-- X-- X-- X

{

X-- X-- X-- X-- X-- X

{ { {

X X--X X--X X

{ { { {
X -- X -- X --X--X -- X

Figure 5. An example of a maze environment, such as
was used in the HIA simulations.

Training was accomplished by an exploratory "wandering"

process through the maze. Each cycle of the simulation

began with taking a random step from the current position

to a neighbor (neighbors in this case were defined by the

links in the maze), with no backtracking unless necessary.

Upon arrival at a node, the corresponding unit in the

activation network was activated. Activatation in each unit

would decay by a fraction ct, with each cycle of the

308



simulation. The weights bewteen units would increase in

proportion to the product of the activity in the two units,

and decay by another factor 13. Appropriate choice of ct

and 13led to a situation in which the weights between

adjacent units were much stronger than the weights

bewteen units two or more steps removed. Hence, these

were all set to zero, and the neural net became isomorphic

to the maze. This network was used to compute paths

between arbitrary points in the maze by the following three

stage procedure:

[1] The unit, g, corresponding to the goal is stimulated

continuously at a high level, K, and activation spreads

through the network via repeated iteration of matrix

multiplication and simultaneous exponential decay, until

the unit, c, corresponding to the current position is

activated to a criterion level O:

Aj(t) = _ Wjk Ak(t) - rlAj(t) for j _ g
k

Ag(t) = K until A c>0

[2] The resulting pattern of activation A is then multiplied,

element by element, by the pattern of the squares of the

weights connecting c to the other units, W e.

[3] The current position is then updated, by moving to the

unit with the greatest resulting product:

c(t+l) = index j that gives a maximum for

W 2
c(t)j Aj

Steps [2] and [3] are repeated until the goal is reached.

This method was found to work quite well over a set of

different mazes, usually finding the shortest path. In cases

where the shortest path was not found, the result was close

to the optimum.

Discussion

While BPL was found to be inadequate for solving

relatively simple problems, it should be recognized that it

frequently requires considerable time and effort (and

educated guesswork) to apply it successfully to a particular

problem. The pattern representations must be carefully

considered. Also, the network architecture and even such

parameters as the learning rate and the momemtum (see

Rumelhart, Hinton, and Williams, 1986 for a detailed

description) can be critical in determining the success of a

particular simulation. Thus, while the results reported

above are discouraging, it is too soon to dismiss this

approach.

The second technique, HIA, performed much better. The

algorithm for finding a path is not especially novel; it is

essentially equivalent to searching though a graph for the

shortest path. The novelty is in the Hebbian modification

technique used to construct the graph via temporally

correlated activitations. This is somewhat sensitive to the

parameters ct and 13.Further work is required for a general

solution using this approach.

Other future plans include using more sophisticated

representations for location, using multiple maps of the

environment, such as maps for various types of

transportation (e.g., walking vs. driving), or maps

covering various scales (e.g., city maps vs. world maps).

Recent work (Munro & Hirtle, 1989) has shown how the

interactive activation model can account for a variety of

documented psychological data, which indicates

interactions between internal representations of different

maps in free recall of geographical information.

Conceivably, a hybrid technique, involving both the BPL

and HIA methods will be used. Such a combination

would probably use HIA for the high level planning and

BPL to issue the action commands to the drive mechanism.

309



References

Anderson, J. A., Silverstein, J. W., Ritz, S. A., and

Jones, R. S. (1977) Distinctive features, categorical

perception, and probability learning: Some applications of

a neural model. Psychological Review, 84:413-451.

Brooks, R. (1983) Solving the find-path problem by good

representation of free space. IEEE Transactions on

Systems, Man, and Cybernetics, SMC 13: 190-197.

Elman, J. L. (1988) Finding structure in time. CRL TR

8801. Center for Research in Language. University of

California at San Diego.

Hebb, D. O. (1949) The Organization of Behavior, New

York: Wiley.

Jordan, M. I. (1987) Attractor dynamics and parallelism in

a connectionist sequential machine. Proceedings of the

Eighth Annual Conference of the Cognitive Science

Society, 531-546.

McClelland, J. L. and Rumelhart, D. E. (1981) An

interactive activation model of context effects in letter

perception: Part I. An account of basic findings.

Psychological Review, 88:375-407.

Munro, P, and Hirtle, S. C. (1989) An interactive

activation model for priming of geographical information.

Proceedings of the Eleventh Annual Conference of the

Cognitive Science Society, [Accepted for presentation]

Rumelhart, D, E., Hinton, G. E., & Williams, R. J.

(1986) Learning internal representations by error

propagation. In: Parallel distributed processing:

Explorations in the microstructure of cognition. D. E.

Rumelhart and J. L. McClelland, eds. Cambridge, MA:

MIT

310


